
Graph neural network (GNN)

Jingnan

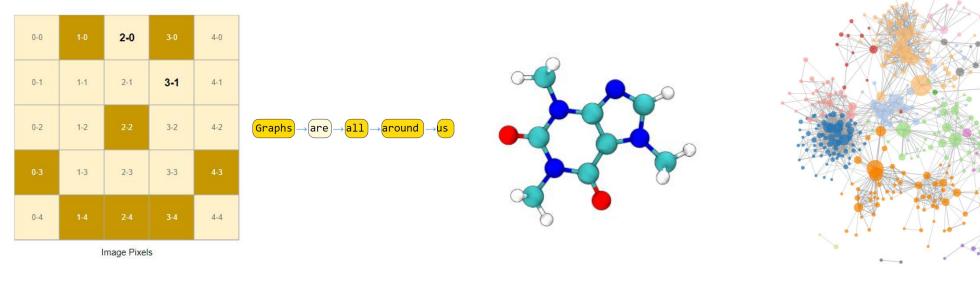
Step-by-step explanation

- What is graph
- What is the application of graph
- How to represent/save a graph
- What is graph neural network
- What is graph convolution network
- What is graph attention network
- What is the tips/experience to train a graph neural network
- ... (if we have time)

What is graph?

- V Vertex (or node) attributes e.g., node identity, number of neighbors
- **E** Edge (or link) attributes and directions e.g., edge identity, edge weight
- **U** Global (or master node) attributes e.g., number of nodes, longest path

Undirected edge



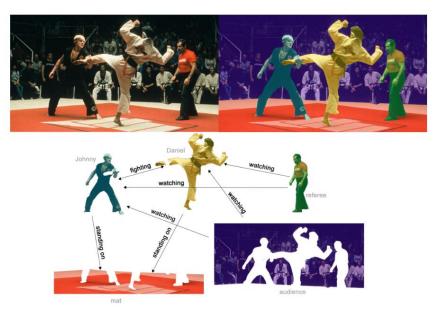
Directed edge

https://distill.pub/2021/gnn-intro/

Examples of graph

Images as graphs

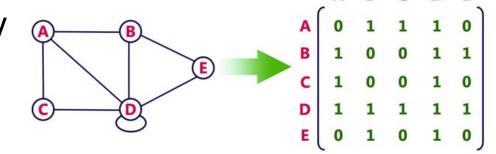
Text as graphs

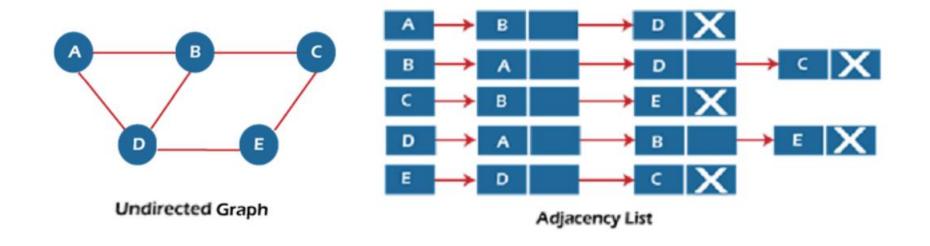

Molecules as graphs

Social networks as graphs
Citation networks as graphs

https://distill.pub/2021/gnn-intro/

What is the application of graph?


- Graph-level task [like image classification]
 - For example, for a molecule represented as a graph, we might want to predict what the molecule smells like, or whether it will bind to a receptor implicated in a disease.
- Node-level task [like image segmentation]
 - Predict the property of nodes. E.g. predict the attitude of citizens on Biden or Trump.
- Edge-level task


In (b), above, the original image (a) has been segmented into five entities: each of the fighters, the referee, the audience and the mat. (C) shows the relationships between these entities.

How to represent/save a graph?

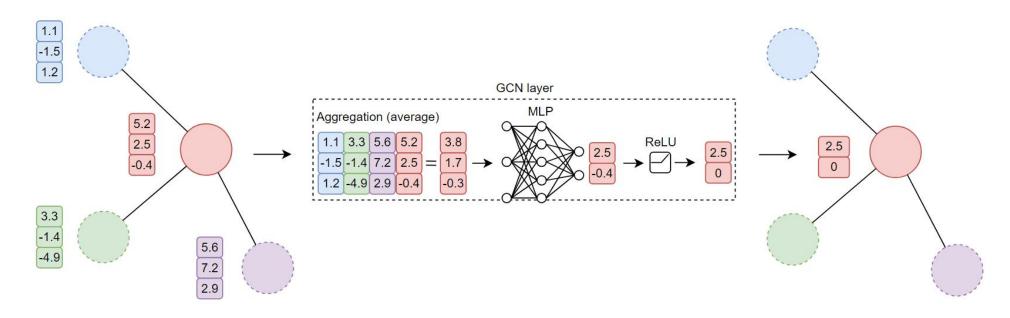
• Adjacency matrix. (Cons: sparse adjacency matrices are space-inefficient.) $o(\pi_{\pi})o$

Adjacency lists.

How to represent/save/show a graph?

import networkx as nx

graph.add_edge(0,1) # add an edge

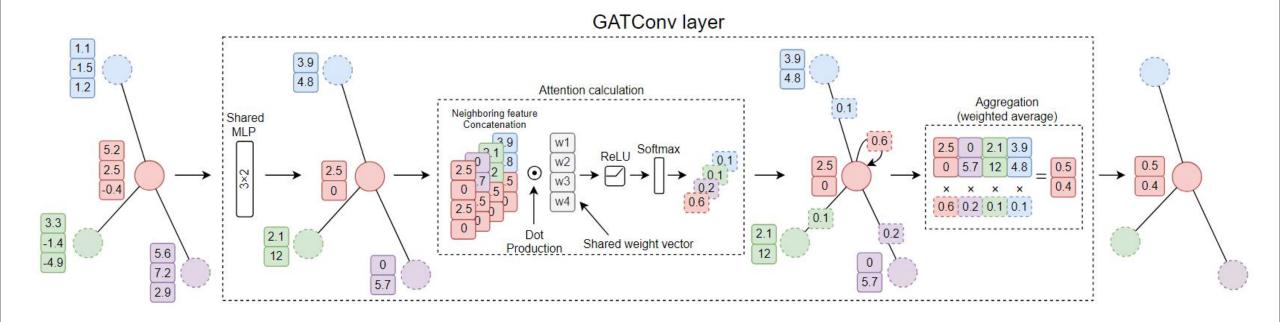

pickle.dump(graph, 'path_to_save', 'wb') # save the graph

More examles: https://networkx.org/documentation/stable/tutorial.html

What is graph neural network?

 Neural networks which receive graph as input, aggregate graph information, compute hidden features, and output prediction values.

What is graph convolution network?



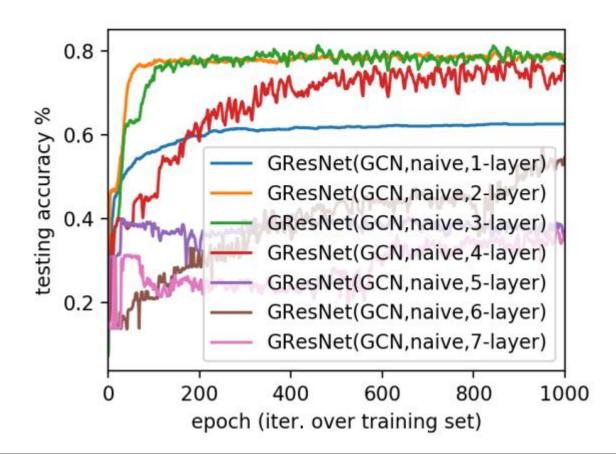
import networkx as nx
from torch_geometric.loader import Dataloader
from torch_geometric.nn import GCNConv

graph_ls = [g1, g2, g3, ...] # build a list of graphs graph_data_loader = Dataloader(graph_ls) net = GCNConv(in_chn=3, out_chn=2)

for data_batch in graph_data_loader: net(data_batch.x, data_batch.edge_index, data_batch.batch)

What is graph attention network?

More graph neural networks


• https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

What is the tips/experience to train a graph neural network?

GNN is very fast!

	Train- ing time [hour]	#par	#FLOPs [GB]
CNN_CT	3.7	30.2	177.62
CNN_Vessel	3.7	30.2	177.62
PNN_Vessel	1.1	2.1	13.8
GCN Vessel	0.25	1.2	2.4

GNN needs only 2-4 layers

Others

• Optuna (https://optuna.org): an easy tool to automatically explore the hyper-parameters

Hyper-parameters	Search space (candidate values)		
Learning rate	1e-3, 1e-4		
Batch size	8, 16, 32 , 64		
Hidden channels	32, 64, 128 , 256		
Convolution layers	1, 2, 3, 4		
Convolution kernel	ChebConv [22], GINConv [29], GCNConv [27], GATConv [32], SGConv [26], GraphConv [28]		
Normalization	BatchNorm [37], InstanceNorm [38], LayerNorm [39], GraphNorm [40], DiffGroupNorm [41]		

How to decide which topic to research?

Thank you